

CONFORT À LA MAISON

Conçue pour être installée dans la cuisine, comme une chaudière traditionnelle, la série "Ducted Kitchen" se positionne confortablement à l'intérieur du meuble colonne de la cuisine, avec expulsion de l'air vers l'extérieur.

AVERTISSEMENTS D'INSTALLATION

1. II est obligatoire d'installer une vanne de sécurité et anti-retour sur l'arrivée d'eau froide. Dans le cas contraire, l'équipement pourrait être sérieusement endommagé. Utilisez une vanne avec un réglage de 0,7 MPa. Pour l'emplacement d'installation, reportez-vous au schéma de raccordement de la tuyauterie.
2. Le tuyau de vidange de la vanne de sécurité doit descendre verticalement et ne doit pas être placé dans un environnement à risque de gel.
3. L'eau doit pouvoir s'écouler librement du tuyau et son extrémité doit être laissée libre.
4. La vanne de sécurité doit être testée régulièrement pour vérifier son fonctionnement et éliminer le calcaire qui pourrait la bloquer.

SÉCURITÉ

Le réservoir est fabriqué en Duplex, une variété d'acier inoxydable extrêmement solide et résistante à la corrosion.
Système anti-légionelles: le danger des bactéries légionelles est évité grâce à des cycles périodiques qui élèvent la température de l'eau à l'intérieur du réservoir au-dessus de $65^{\circ} \mathrm{C}$.

SCHÉMA DE CONNEXION HYDRAULIQUE

HOT WATER

HWMBS 2201 HEA | HWMBS 2301 HEA
HWMBS 2401 HEA | HWMBS 4401 HEA (NEW)
Chauffe-eau pompe à chaleur monobloc 200/300/400 litres série "Ducted"

Chauffe-eau au sol avec possibilité d'intégration avec du solaire thermique
R134A | Gas réfrigérant
Réservoir en acier Inoxydable
$60^{\circ} \mathrm{C}$ | eau chaude avec le compresseur uniquement
Cycle anti-légionelle | Personnalisable pour différents besoins ou excluable

PERFORMANCES

MODĖLE	CHARGE	CLASSE ÉNERGÉTIQUE	$\underset{\text { Confomenentiè en } 16147}{\text { COP }}$
HWMBS 2201 HEA	200 L	$\boldsymbol{w}_{\text {L A }}$ A	2,61
HWMBS 2301 HEA	300 L	$\omega_{x<}$ A	2,68
HWMBS 2401 HEA	400L	W_{x} - 4	2,61
HWMBS 4401 HEA	400 L	$\omega_{x<1}$ A	2,62

Modèle			HWMBS 2201 HEA	HWMBS 2301 HEA	HWMBS 2401 HEA	HWMBS 4401 HEA*
Volume du réservoir		L	200	300	400	400
Bobine d'intégration solaire (acier inoxydable)		m2	1,0	1,0	1,0	1,0
Puissance thermique nominale1		W	2040	2040	2060	3285
Absorption électrique nominale1		W	465	460	477	895
Capacité de production ECS nominale1		L/h	43,5	43,5	45,0	70,5
COP nominal 1		W/W	4,39	4,43	4,32	3,67
COPDHW2		W/W	2,61	2,68	2,61	2,62
Profil du cycle de test2		-	L	XL	XL	XL
Volume d'eau chaude à $40^{\circ} 2$		L	250	390	434	434
Classe d'efficacité énergétique3		-	A	A	A	A
Degré de protection IP		-	IPX1	IPX1	IPX1	IPX1
Plage de réglage de la température de l'eau chaude		${ }^{\circ} \mathrm{C}$	10~70 (50 défaut)	10~70 (50 défaut)	10~70 (50 défaut)	10~70 (50 défaut)
Temp. max. de l'eau chaude compresseur uniquement		${ }^{\circ} \mathrm{C}$	60	60	60	60
Données électriques	Alimentation	Ph-V-Hz	1-220~240V-50Hz			
	Résistance électrique supplémentaire	W	1500			
	Courant maximum (résistance incluse)	A	10,0	10,0	10,0	13,0
Données du circuit frigorifique	Réfrigérant4	Type (GWP)	R134a (1430)	R134a (1430)	R134a (1430)	R134a (1430)
	Quantité	kg	1,0	1,0	1,0	0,9
	Tonnes équivalent CO	t	1,430	1,430	1,430	1,287
	Compresseur	type	RotatifON/OFF			
Spécifications du produit	Dimensions (Diamètre x Hauteur)	mm	560×1755	640×1850	700×1880	700×1880
	Poids net	kg	95	105	115	118
	Niveau de puissance sonore	$d B(A)$	58,2	58,2	58	59,2
	Niveau de pression sonore à 2 m	$d B(A)$	37,8	37,8	38	37,2
Réservoir	Matériau du réservoir	-	Acier inoxydable 304			
	Connexions ECS	pouces	G1' (DN25)	G11 (DN25)	G1' (DN25)	G1" (DN25)
	Connexions bobine solaire	pouces	G3/4" (DN20)	G3/4" (DN20)	G3/4" (DN20)	63/4" (DN20)
	Type d'anode	-	Électrode en titane avec LED d'alarme			
	Pression maximale de service	bar	10	10	10	10
Air aspiré	Champs de travail	${ }^{\circ} \mathrm{C}$	$-5 \sim+43$			
	Débit d'air (avec canalisation)	m3/h	400	400	450	800
	Pression statique du ventilateur	Pa	60	60	60	60
	Canalisation de l'air - Diamètre	mm	177	177	177	177
	Canalisation de l'air - Longueur Max	m	6	6	6	6

* DRAFT: données susceptibles d'être modifiées sans préavis.

1. Conditions: a ar aspiré $20^{\circ} \mathrm{CBS}\left(15^{\circ} \mathrm{CBH}\right)$, eau d'entrée $15^{\circ} \mathrm{C} /$ sortie $55^{\circ} \mathrm{C}$. 2. Test selon EN16147; air $7^{\circ} \mathrm{C}$.
2. Directive 2009/125/CE - ERP UE n. 814/2013. 4. Les pertes de réfrigérant contribuent au changement climatique. Lorsqu'ils sont rejetés dans l'atmosphère, les réfrigérants ayant un potentiel de réchauffement global (PRG) plus faible contribuent moins au réchauffement climatique que ceux ayant un GWP plus élevé. Cet appareil contient un réfrigérant ayant un GWP de 1430 . Sii kg de ce réfrigérant était rejeté dans l'atmosphère, l'impact sur le réchauffement climatique serait donc 1430 fois supérieur à 1 kg de CO , sur une période de 100 ans. L'utilisateur ne doit en aucun cas tenter d'intervenir sur le circuit frigorifique ou de démonter le produit. Si nécessaire, contactez toujours du personnel qualifí

LE CONFORT À LA MAISON

Programmation pour profiter d'éventuelles plages horaires avantageuses sur le tarif de l'électricité et disposer d'eau chaude en cas de besoin.

Deux modes de fonctionnement: économie maximale avec l'utilisation du compresseur seul ou vitesse maximale avec l'utilisation simultanée de la pompe à chaleur et de la résistance électrique intégrée, pour produire de grandes quantités d'ECS en peu de temps.

AVERTISSEMENTS D'INSTALLATION

1. II est obligatoire d'installer une vanne de sécurité et anti-retour sur l'arrivée d'eau froide. Dans le cas contraire, l'équipement pourrait être sérieusement endommagé. Utilisez une vanne avec un réglage de 0,7 MPa. Pour l'emplacement d'installation, reportez-vous au schéma de raccordement de la tuyauterie.
2. Le tuyau de vidange de la vanne de sécurité doit descendre verticalement et ne doit pas être placé dans un environnement à risque de gel.
3. L'eau doit pouvoir s'écouler librement du tuyau et son extrémité doit être laissée libre.
4. La vanne de sécurité doit être testée régulièrement pour vérifier son fonctionnement et éliminer le calcaire qui pourrait la bloquer.

SÉCURITÉ

L'échangeur thermique étant externe au réservoir, aucune contamination entre l'eau et le réfrigérant n'est possible.

Système anti-légionelles: le danger des bactéries légionelles est évité grâce à des cycles périodiques qui élèvent la température de l'eau à l'intérieur du réservoir au-dessus de $65^{\circ} \mathrm{C}$.

L'anode en titane protège le réservoir de l'action corrosive de l'eau de manière inépuisable : elle garantit une plus grande fiabilité et des coûts de maintenance inférieurs par rapport à une solution avec une anode en magnésium.

SCHÉMA DE CONNEXION HYDRAULIQUE

